“…For example, one might divide metaheuristics into two categories depending on whether they are pure or hybrid. Examples of pure metaheuristics for the TSP include Simulated Annealing (Kirkpatrick et al, 1983;Malek et al, 1989), Tabu Search (Malek, 1988;Malek et al, 1989;Tsubakitani and Evans, 1998a), Guided Local Search (Voudouris and Tsang, 1999), Jump Search (Tsubakitani and Evans, 1998b), Randomized Priority Search (DePuy, Moraga and Whitehouse, 2005), Greedy Heuristic with Regret (Hassin and Keinan, 2008), Genetic Algorithms (Jayalakshmi et al, 2001;Tsai et al, 2003;Albayrak and Allahverdi, 2011;Nagata and Soler, 2012), Evolutionary Algorithms (Liao et al, 2012), Ant Colony Optimization (Dorigo and Gambardella, 1997), Artificial Neural Networks (Leung et al, 2004;Li et al, 2009), Water Drops Algorithm (Alijla et al, 2014), Discrete Firefly Algorithm (Jati et al, 2013), Invasive Weed Optimization (Zhou et al, 2015), Gravitational Search (Dowlatshahi et al, 2014), and Membrane Algorithms (He et al, 2014). Examples of hybrid metaheuristics include Simulated Annealing with Learning (Lo and Hsu, 1998), Genetic Algorithm with Learning (Liu and Zeng, 2009), SelfOrganizing Neural Networks and Immune System (Masutti and de Castro, 2009), Genetic Algorithm and Local Search (Albayrak and Allahverdi, 2011), Genetic Algorithm and Ant Colony Optimization (Dong at al., 2012), Honey Bees Mating and GRASP (Marinakis et al, 2011), and Particle Swarm Optimization and Ant Colony Optimization (Elloumi et al, 2014).…”