Abstract. We discuss a novel metaphor of tumor progression stimulated by the process of angiogenesis. The realistic 3-D dynamics of the entire system consisting of the tumor, tissue cells, blood vessels and blood flow can be reproduced by using interacting particles. The particles mimic the clusters of tumor cells. They interact with their closest neighbors via semi-harmonic forces simulating mechanical resistance of the cell walls and the external pressure. The particle dynamics is governed by both the Newtonian laws of motion and the rules of cell life-cycle. The particles replicate by a simple mechanism of division, similar to that of a single cell reproduction and die due to necrosis or apoptosis. We conclude that this concept can serve as a general framework for designing advanced multi-scale models of tumor dynamics. In respect to spatio-temporal scale, the interactions between particles can define e.g., cluster-to-cluster, cellto-cell, red blood cells and fluid particles interactions, cytokines motion, etc. Consequently, they influence the macroscopic dynamics of the particle ensembles in various sub-scales ranging from diffusion of cytokines, blood flow up to growth of tumor and vascular network expansion.