Vehicular traffic on urban road networks is of great interest to those who monitor air quality. Combustion emissions from transport vehicles are a major contributor of air pollution. More specifically, the release of fine particulate matter which has been linked to premature deaths. Travel and idle time are two factors that influence the amount of pollution generated by traffic. Reducing idle and travel times would have a positive impact on air quality. Thus, it is increasingly crucial to manage intersections effectively, particularly in congested cities and across a range of different types of traffic conditions. A variety of market-based multi-agent traffic management mechanisms have been proposed to improve traffic flow. In many of these systems drivers "pay" to gain access to favourable road ways (e.g., minimise travel time). A major obstacle in adopting many of these mechanisms is that the necessary communication infrastructure does not yet exist. They rely on vehicle-toinfrastructure and/or vehicle-to-vehicle communications. In this work, we propose a market-based mechanism which relies on existing technology (and in some places this technology is already in use). Experimental results show that our market-based approach is better at reducing idle and travel times as compared to fixed-time signal controllers.