Recent developments have increased the demand for adequate security solutions, based on primitives that cannot be easily manipulated or altered, such as hardware-based primitives. Security primitives based on Dynamic Random Access Memory (DRAM) can provide cost-efficient and practical security solutions, especially for resource-constrained devices, such as hardware used in the Internet of Things (IoT), as DRAMs are an intrinsic part of most contemporary computer systems. In this work, we present a comprehensive overview of the literature regarding DRAM-based security primitives and an extended classification of it, based on a number of different criteria. In particular, first, we demonstrate the way in which DRAMs work and present the characteristics being exploited for the implementation of security primitives. Then, we introduce the primitives that can be implemented using DRAM, namely Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs), and present the applications of each of the two types of DRAM-based security primitives. We additionally proceed to assess the security such primitives can provide, by discussing potential attacks and defences, as well as the proposed security metrics. Subsequently, we also compare these primitives to other hardware-based security primitives, noting their advantages and shortcomings, and proceed to demonstrate their potential for commercial adoption. Finally, we analyse our classification methodology, by reviewing the criteria employed in our classification and examining their significance.