2023
DOI: 10.1145/3597416
|View full text |Cite
|
Sign up to set email alerts
|

A Dual-branch Learning Model with Gradient-balanced Loss for Long-tailed Multi-label Text Classification

Abstract: Multi-label text classification has a wide range of applications in the real world. However, the data distribution in the real world is often imbalanced, which leads to serious long-tailed problems. For multi-label classification, due to the vast scale of datasets and existence of label co-occurrence, how to effectively improve the prediction accuracy of tail labels without degrading the overall precision becomes an important challenge. To address this issue, we propose A Dual-Branch Learning Model… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 28 publications
0
0
0
Order By: Relevance