Coumarin derivatives, one of the organic fluorescent materials, are widely applied in many areas such as laser dyes, organic light emitting diodes (OLED), pharmaceuticals and bio/chemosensors, with the advantages of the large conjugated system and planar structure. In the coumarin analogs, which are polarity sensitive fluorophores, a shift to the red zone is observed in the case of π expansion at 3-positions and electron donor groups at 7-positions. The present article reports the synthesis of novel hybrid compounds (CD1-CD8) containing coumarin and benzodiazepine rings using ethyl 3-(7-(diethylamino)-2-oxo-2H-chromen-3-yl)-3-oxopropanoate reagent and 1,2-diaminobenzene derivatives under optimized reaction conditions with PTSA catalyst. The structures of target compounds synthesized were characterized by FTIR, 1 HNMR, 13 CNMR, HRMS and UV-Vis spectra. The effects of electron withdrawing and electron donor groups in the cyclocondensation reaction that takes place as regioselective were evaluated in detail. The substituent effects were investigated for n-π* and π-π* electronic transitions in UV-Vis Spectroscopy.