Producing high efficiency solar cells without high-temperature processing or use of additives still remains a challenge with the two-step process. Here, the solution processing of MAPbI 3 from PbI 2 films in N,N-dimethylformamide (DMF) is investigated. In-situ grazing incidence wide-angle X-ray scattering (GIWAXS) measurements reveal a sol-gel process involving three PbI 2 -DMF solvate complexes-disordered (P 0 ) and ordered (P 1 , P 2 )-prior to PbI 2 formation. When the appropriate solvated state of PbI 2 is exposed to MAI (methylammonium Iodide), it can lead to rapid and complete room temperature conversion into MAPbI 3 with higher quality films and improved solar cell performance. Complementary in-situ optical reflectance, absorbance, and quartz crystal microbalance with dissipation (QCM-D) measurements show that dry PbI 2 can take up only one third of the MAI taken up by the solvated-crystalline P 2 phase of PbI 2 , requiring additional annealing and yet still underperforming. The perovskite solar cells fabricated from the ordered P 2 precursor show higher power conversion efficiency (PCE) and reproducibility than devices fabricated from other cases. The average PCE of the solar cells is greatly improved from 13.2(±0.53)% (from annealed PbI 2 ) to 15.7(±0.35)% (from P 2 ) reaching up to 16.2%. This work demonstrates the importance of controlling the solvation of PbI 2 as an effective strategy for the growth of high-quality perovskite films and their application in high efficiency and reproducible solar cells.