Abstract:Interval type-2 fuzzy c-means (IT2FCM) clustering methods for remote-sensing data classification are based on interval type-2 fuzzy sets and can effectively handle uncertainty of membership grade. However, most of these methods neglect the spatial information when they are used in image clustering. The spatial information and spectral indices are useful in remote-sensing data classification. Thus, determining how to integrate them into IT2FCM to improve the quality and accuracy of the classification is very important. This paper proposes an enhanced IT2FCM* (EnIT2FCM*) algorithm by combining spatial information and spectral indices for remote-sensing data classification. First, the new comprehensive spatial information is defined as the combination of the local spatial distance and attribute distance or membership-grade distance. Then, a novel distance metric is proposed by combining this new spatial information and the selected spectral indices; these selected spectral indices are treated as another dataset in this distance metric. To test the effectiveness of the EnIT2FCM* algorithm, four typical validity indices along with the confusion matrix and kappa coefficient are used. The experimental results show that the spatial information definition proposed here is effective, and some spectral indices and their combinations improve the performance of the EnIT2FCM*. Thus, the selection of suitable spectral indices is crucial, and the combination of soil adjusted vegetation index (SAVI) and the Automated Water Extraction Index (AWEI sh ) is the best choice of spectral indices for this method.