The disposal of hazardous waste of any form has become a great concern for the industrial sector due to increased environmental awareness. The increase in usage of hydroprocessing catalysts by petrochemical industries and lithium‐ion batteries (LIBs) in portable electronics and electric vehicles will soon generate a large amount of scrap and create significant environmental problems. Like general electronic wastes, spent catalysts and LIBs are currently discarded in municipal solid waste and disposed of in landfills in the absence of policy and feasible technology to drive alternatives. Such inactive catalyst materials and spent LIBs not only contain not only hazardous heavy metals but also toxic and carcinogenic chemicals. Besides polluting the environment, these systems (spent catalysts and LIBs) contain valuable metals such as Ni, Mo, Co, Li, Mn, Rh, Pt, and Pd. Therefore, the extraction and recovery of these valuable metals has significant importance. In this Review, we have summarized the strategies used to recover valuable (expensive) as well as cheap metals from secondary resources—especially spent catalysts and LIBs. The first section contains the background and sources of LIBs and catalyst scraps with their current recycling status, followed by a brief explanation of metal recovery methods such as pyrometallurgy, hydrometallurgy, and biometallurgy. The recent advances achieved in these methods are critically summarized. Thus, the Review provides a guide for the selection of adequate methods for metal recovery and future opportunities for the repurposing of recovered materials.