BackgroundButterflies are popular model organisms to study physiological mechanisms
underlying variability in oogenesis and egg provisioning in response to
environmental conditions. Nothing is known, however, about; the
developmental mechanisms governing butterfly oogenesis, how polarity in the
oocyte is established, or which particular maternal effect genes regulate
early embryogenesis. To gain insights into these developmental mechanisms
and to identify the conserved and divergent aspects of butterfly oogenesis,
we analysed a de novo ovarian transcriptome of the Speckled Wood
butterfly Pararge aegeria (L.), and compared the results with known
model organisms such as Drosophila melanogaster and Bombyx
mori.ResultsA total of 17306 contigs were annotated, with 30% possibly novel or highly
divergent sequences observed. Pararge aegeria females expressed
74.5% of the genes that are known to be essential for D.
melanogaster oogenesis. We discuss the genes involved in all
aspects of oogenesis, including vitellogenesis and choriogenesis, plus those
implicated in hormonal control of oogenesis and transgenerational hormonal
effects in great detail. Compared to other insects, a number of significant
differences were observed in; the genes involved in stem cell maintenance
and differentiation in the germarium, establishment of oocyte polarity, and
in several aspects of maternal regulation of zygotic development.ConclusionsThis study provides valuable resources to investigate a number of divergent
aspects of butterfly oogenesis requiring further research. In order to fully
unscramble butterfly oogenesis, we also now also have the resources to
investigate expression patterns of oogenesis genes under a range of
environmental conditions, and to establish their function.