With the improvement of technologies, people's demand for intelligent devices of indoor and outdoor living environments keeps increasing. However, the traditional control system only adjusts living parameters mechanically, which cannot better meet the requirements of human comfort intelligently. This article proposes a building intelligent thermal comfort control system based on the Internet of Things and intelligent artificial intelligence. Through the literature review, various algorithms and prediction methods are analyzed and compared. The system can automatically complete a series of operations through IoT hardware devices which are located at multiple locations in the building with key modules. The code is developed and debugged by Python to establish a model for energy consumption prediction with environmental factors such as temperature, humidity, radiant temperature, and air velocity on thermal comfort indicators. By using the simulation experiments, 1700 data sets are used for training. Then, the output PMV predicted values are compared with the real figure. The results show that the performance of this system is superior to traditional control on energy-saving and comfort.Future Internet 2020, 12, 30 2 of 18 prediction, and the error is relatively large. In recent years, the development trends of computer science, applied mathematics, statistics, and semiconductor hardware have brought iterative progress in artificial intelligence technology. This makes the simulation, analysis, prediction.
Literature ReviewBig data mainly refers to data management on a certain scale. Due to the increase of the data volume, speed, and type, traditional methods cannot be used to proceed [1]. The artificial intelligence technology represented by machine learning and deep learning algorithms has a great dependence on datasets. Only when the original data is large enough can the trained algorithm be more accurate. Therefore, before applying the model, it is necessary to obtain enough data for repeated training.In the traditional building with related planning and landscape fields, big data was firstly applied to Geographic Information System (GIS), including a variety of spatial information such as land conditions, terrain, and climate. As for the single building, its automated development is mainly reflected in the field of intelligent building, with small but higher accuracy. The complexity of intelligent building systems is high. Meanwhile, the physical structure, indoor environment, and operating systems of the entire building are monitored and analyzed. It can develop the building in the direction of intelligence. With the help of building big data system, it can analyze the use of the building in real-time, integrate the related information of the surroundings, and let the building make optimal adjustments according to the actual situation [2]. In the process of optimal adjustment, IoT sensors and controllers are usually targeted in the building. The organic combination of physical devices and computer algorithms pla...