Acute diarrheal disease (ADD) can be caused by a range of pathogens, including bacteria, viruses, and parasites. Conventional diagnostic methods, such as culture, microscopy, biochemical assays, and enzyme-linked immunosorbent assays (ELISA), are laborious and time-consuming and lack sensitivity. Combined, the array of tests performed on a single specimen can increase the turnaround time (TAT) significantly. We validated a 19plex laboratory-developed gastrointestinal pathogen panel (GPP) using Luminex xTAG analyte-specific reagents (ASRs) to simultaneously screen directly in fecal specimens for diarrhea-causing pathogens, including bacteria (Campylobacter jejuni, Salmonella spp., Shigella spp., enterotoxigenic Escherichia coli [ETEC], Shiga toxin-producing E. coli [STEC], E. coli O157:H7, Vibrio cholerae, Yersinia enterocolitica, and toxigenic Clostridium difficile), parasites (Giardia lamblia, Cryptosporidium spp., and Entamoeba histolytica), and viruses (norovirus GI and GII, adenovirus 40/41, and rotavirus A). Performance characteristics of GPP ASRs were determined using 48 reference isolates and 254 clinical specimens. Stool specimens from individuals with diarrhea were tested for pathogens using conventional and molecular methods. Using the predictive methods as standards, the sensitivities of the GPP ASRs were 100% for adenovirus 40/41, norovirus, rotavirus A, Vibrio cholerae, Yersinia enterocolitica, Entamoeba histolytica, Cryptosporidium spp., and E. coli O157:H7; 95% for Giardia lamblia; 94% for ETEC and STEC; 93% for Shigella spp.; 92% for Salmonella spp.; 91% for C. difficile A/B toxins; and 90% for Campylobacter jejuni. The overall comparative performance of the GPP ASRs with conventional methods in clinical samples was 94.5% (range, 90% to 97%), with 99% (99.0% to 99.9%) specificity. Implementation of the GPP ASRs enables our public health laboratory to offer highly sensitive and specific screening and identification of the major ADD-causing pathogens.