Trajectory-based aircraft operation and control is one of the hot issues in air traffic management. However, the accurate mechanism modeling of aircraft is tough work, and the operation data have not been effectively utilized in many studies. So, in this work, we apply the model-free adaptive iterative learning control method to address the time-of-arrival control problem in trajectory-based aircraft operation. This problem is first formulated into a trajectory tracking problem with along-track wind disturbance. Through rigorous analysis, it is shown that this method, combined with point-to-point iterative learning control (ILC) strategy, can effectively deal with the arrival time control problem with multiple time constraints. Then, the terminal ILC strategy is applied, aiming to resolve the same problem with a time constraint at the end point. Compared with the PID (Proportional Integral Derivative) type ILC, the proposed method improves control performance by 11.15% in root mean square of tracking error and 9.32% in integral time absolute error. The sensitivity and flexibility of the data-driven approach is further verified through numerical simulations.