1968
DOI: 10.1109/tssc.1968.300136
|View full text |Cite
|
Sign up to set email alerts
|

A Formal Basis for the Heuristic Determination of Minimum Cost Paths

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

6
4,650
0
66

Year Published

1997
1997
2015
2015

Publication Types

Select...
6
2
1

Relationship

0
9

Authors

Journals

citations
Cited by 9,098 publications
(4,722 citation statements)
references
References 2 publications
6
4,650
0
66
Order By: Relevance
“…• astar uses the A * pathfinding algorithm [31] to find the shortest route between two points in a road map.…”
Section: Analysis Of Ordered Irregular Algorithmsmentioning
confidence: 99%
“…• astar uses the A * pathfinding algorithm [31] to find the shortest route between two points in a road map.…”
Section: Analysis Of Ordered Irregular Algorithmsmentioning
confidence: 99%
“…El algoritmo es una especialización de la búsqueda de costo uniforme [10] y, como tal, no funciona en grafos con aristas de coste negativo. En el siguiente seudocódigo se describen los pasos que sigue el algoritmo de Dijkstra para encontrar la ruta más corta [11]: Algoritmo de Búsqueda A*: presentado por primera vez en 1968 por Peter E. Hart, Nils J. Nilsson y Bertram Raphael [12]. Este algoritmo resuelve el problema del camino mínimo entre un par de vérti-ces, usando una heurística para intentar agilizar la búsqueda [9].…”
Section: El Problema Del Camino Mínimounclassified
“…A * is an algorithm for goal-directed search which is very similar to Dijkstra's algorithm [22]. The difference between the two algorithms lies in the priority key.…”
Section: A * With Landmarksmentioning
confidence: 99%
“…For A * , the priority key of a node v is made up of two parts: the length of the tentative shortest path from the source to v (as in Dijkstra's algorithm), and an underestimation of the distance to reach the target from v. Thus, the key of v represents an estimation of the length of the shortest path from s to t passing through v, and nodes are sorted in the priority queue according to this criterion. The function which estimates the distance between a node and the target is called potential function π; the use of π has the effect of giving priority to nodes that are (supposedly) closer to the target node t. If the potential function is such that π(u) − π(v) ≤ c(u, v) ∀(u, v) ∈ A and π(t) ≤ 0, then A * computes shortest paths [22] and π(v) ≤ d(v, t) ∀v ∈ V . A * is equivalent to Dijkstra's algorithm on a graph where arc costs are the reduced costs [23].…”
Section: A * With Landmarksmentioning
confidence: 99%