The omnidirectional camera, having the advantage of broadening the field of view, realizes 360° imaging in the horizontal direction. Due to light reflection from the mirror surface, the collinearity relation is altered and the imaged scene has severe nonlinear distortions. This makes it more difficult to estimate the pose of the omnidirectional camera. To solve this problem, we derive the mapping from omnidirectional camera to traditional camera and propose an omnidirectional camera linear imaging model. Based on the linear imaging model, we improve the EPnP algorithm to calculate the omnidirectional camera pose. To validate the proposed solution, we conducted simulations and physical experiments. Results show that the algorithm has a good performance in resisting noise.