An intelligent transportation system is one of the fundamental goals of the smart city concept. The Internet of Things (IoT) concept is a basic instrument to digitalize and automatize the process in the intelligent transportation system. Digitalization via the IoT concept enables the automatic collection of data usable for management in the transportation system. The IoT concept includes a system of sensors, actuators, control units and computational distribution among the edge, fog and cloud layers. The study proposes a taxonomy of sensors used for monitoring tasks based on motion detection and object tracking in intelligent transportation system tasks. The sensor’s taxonomy helps to categorize the sensors based on working principles, installation or maintenance methods and other categories. The sensor’s categorization enables us to compare the effectiveness of each sensor’s system. Monitoring tasks are analyzed, categorized, and solved in intelligent transportation systems based on a literature review and focusing on motion detection and object tracking methods. A literature survey of sensor systems used for monitoring tasks in the intelligent transportation system was performed according to sensor and monitoring task categorization. In this review, we analyzed the achieved results to measure, sense, or classify events in intelligent transportation system monitoring tasks. The review conclusions were used to propose an architecture of the universal sensor system for common monitoring tasks based on motion detection and object tracking methods in intelligent transportation tasks. The proposed architecture was built and tested for the first experimental results in the case study scenario. Finally, we propose methods that could significantly improve the results in the following research.