Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
4Abstract-A great many people suffer from neurological movement disorders that render typical hardware interface devices ineffective. A need exists for a universal interface device that can be trained to accept a wide range of inputs across varying types and severities of movement disorders. In this regard, this paper details the design, testing and optimization of an accelerometer-based gesture identification system. A Bluetooth-enabled IMU mounted on the wrist provides hand motion trajectory information to a local terminal. Several techniques are applied to decrease the intra-class variance and reduce classifier complexity including filtering, segmentation and temporal scaling. Datasets consisted of 520 training samples, 260 validation samples and a further 520 testing samples. A multi-layer feed forward artificial neural network (ML-FFNN) was used to classify the input space into 26 different classes. Initial system accuracy, using arbitrary hyperparameters was 77.69% with final optimized accuracy at 99.42%.