2016
DOI: 10.14257/ijdta.2016.9.1.20
|View full text |Cite
|
Sign up to set email alerts
|

A Fuzzy C-Means Clustering Algorithm Based on Improved Quantum Genetic Algorith

Abstract: Aiming at the problem of traditional fuzzy C-means

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
3
0
3

Year Published

2017
2017
2023
2023

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 11 publications
(6 citation statements)
references
References 10 publications
0
3
0
3
Order By: Relevance
“…To overcome the first shortcoming, some global optimization techniques have been introduced to deal with data clustering problems in the past years, for example, simulated annealing-(SA-) based [5], particle swarm optimization-(PSO-) based [6][7][8], genetic algorithms-(GA-) based [9][10][11], and quantum genetic algorithms-(QGA-) based techniques [12]. In recent years, genetic algorithms have been used to automatically determine the number of clusters by using variable-length strings [13,14].…”
Section: Introductionmentioning
confidence: 99%
“…To overcome the first shortcoming, some global optimization techniques have been introduced to deal with data clustering problems in the past years, for example, simulated annealing-(SA-) based [5], particle swarm optimization-(PSO-) based [6][7][8], genetic algorithms-(GA-) based [9][10][11], and quantum genetic algorithms-(QGA-) based techniques [12]. In recent years, genetic algorithms have been used to automatically determine the number of clusters by using variable-length strings [13,14].…”
Section: Introductionmentioning
confidence: 99%
“…K-means is the well-known clustering techniques but sensitive to initial cluster centres and easy convergences to local optimization. Therefore, Nature-Inspired Optimization Algorithms (NIOA) are successfully employed to overcome the problems of K-means in image clustering domain [19][20][21][22][23]. For example, Orman et.…”
Section: Introductionmentioning
confidence: 99%
“…(2015)[21], Sentiment AnalysisSeveryn et al (2015) [17], Part of speech taggingWang et al (2015) [19]. In the case of solving the problem of Name Entity Recognition,Hammerton (2003) [7] using RNN with LSTM cells presented byHochreiter et al (1997) [8] Huang et al (2015).…”
mentioning
confidence: 99%
“…Masalah sensitifitas terhadap pusat klaster awal adalah kelemahan utama FCM . Sensitifitas terhadap pusat klaster dapat menghasilkan iterasi proses yang sangat rumit dan dapat mengakibatkan proses pengklasteran terjebak pada kondisi optimum lokal (Ye & Jin, 2016a).…”
unclassified
“…Pendekatan yang paling populer untuk menangani pusat klaster awal yaitu membangkitkan bilangan acak (Gayahtri & Vasanthi, 2017) membutuhkan waktu yang lama dan luaran sulit dikontrol, dimana dengan input data yang sama, luaran selalu berubah dari satu pengujian ke pengujian selanjutnya (Kumar, 2015) Beberapa penelitian terbaru berhasil membuktikan bahwa pendekatan teknik optimalisasi seperti Genetic Algorithm (GA) (Wikaisuksakul, 2014), (Ye & Jin, 2016b), Ant Colony Optimization (ACO) (Raghtate & Salankar, 2015) berhasil mengatasi kelemahan FCM. Hasil penelitian menunjukkan bahwa dengan menerapkan metodemetode tersebut, diperoleh algoritma yang lebih efisien dan performa pengklasteran yang lebih baik serta peningkatan stabilitas dan akurasi pengklasteran.…”
unclassified