Although post-translational modifications such as phosphorylation mediate fundamental biological processes within the cell, relatively few methods exist that allow proteome-wide identification of proteins that interact with these modifications. We constructed a yeast surface-displayed human cDNA library and utilized it to identify protein fragments with affinity for phosphorylated peptides derived from the major tyrosine autophosphorylation sites of the epidermal growth factor receptor or focal adhesion kinase. We identified cDNAs encoding the Src homology 2 domains from adapter protein APS, phosphoinositide 3-kinase regulatory subunit 3, SH2B, and tensin, demonstrating the effectiveness of this approach.