There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
The Biomolecular Interaction Network Database (BIND) (http://bind.ca) archives biomolecular interaction, reaction, complex and pathway information. Our aim is to curate the details about molecular interactions that arise from published experimental research and to provide this information, as well as tools to enable data analysis, freely to researchers worldwide. BIND data are curated into a comprehensive machinereadable archive of computable information and provides users with methods to discover interactions and molecular mechanisms. BIND has worked to develop new methods for visualization that amplify the underlying annotation of genes and proteins to facilitate the study of molecular interaction networks. BIND has maintained an open database policy since its inception in 1999. Data growth has proceeded at a tremendous rate, approaching over 100 000 records. New services provided include a new BIND Query and Submission interface, a Standard Object Access Protocol service and the Small Molecule Interaction Database (http://smid.blueprint.org) that allows users to determine probable small molecule binding sites of new sequences and examine conserved binding residues. INTRODUCTIONIn light of the vast scientific resources made available through genomics, the science of deciphering molecular mechanisms is expanding rapidly. Scientists who once hunted for disease genes or sought to distinguish key concepts in evolution are now turning their attention to the details of molecular assembly and mechanism to further understand medicine and the key concepts underlying biology. The Biomolecular Interaction Network Database (BIND) was designed to store complete information about molecular assembly through a database structure in order to archive interactions and reactions arising from biopolymers (protein, RNA and DNA), as well as small molecules, lipids and carbohydrates. Detailed information about molecular mechanism, such as the chemical product(s) of an enzymatic reaction, can be encoded in BIND. The underlying ontology of the BIND database is chemistry, and as such, BIND is capable of storing information about molecular interactions to atomic resolution. The taxonomic scope of BIND is
The use of computational modeling to describe and analyze biological systems is at the heart of systems biology. This Perspective discusses the development and use of ontologies that are designed to add semantic information to computational models and simulations.
Abstract. The FAIR Data Principles propose that all scholarly output should be Findable, Accessible, Interoperable, and Reusable. As a set of guiding principles, expressing only the kinds of behaviours that researchers should expect from contemporary data resources, how the FAIR principles should manifest in reality was largely open to interpretation. As support for the Principles has spread, so has the breadth of these interpretations. In observing this creeping spread of interpretation, several of the original authors felt it was now appropriate to revisit the Principles, to clarify both what FAIRness is, and is not.
Imagine if we could compute across phenotype data as easily as genomic data; this article calls for efforts to realize this vision and discusses the potential benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.