There is an urgent need to improve the infrastructure supporting the reuse of scholarly data. A diverse set of stakeholders—representing academia, industry, funding agencies, and scholarly publishers—have come together to design and jointly endorse a concise and measureable set of principles that we refer to as the FAIR Data Principles. The intent is that these may act as a guideline for those wishing to enhance the reusability of their data holdings. Distinct from peer initiatives that focus on the human scholar, the FAIR Principles put specific emphasis on enhancing the ability of machines to automatically find and use the data, in addition to supporting its reuse by individuals. This Comment is the first formal publication of the FAIR Principles, and includes the rationale behind them, and some exemplar implementations in the community.
Abstract. The FAIR Data Principles propose that all scholarly output should be Findable, Accessible, Interoperable, and Reusable. As a set of guiding principles, expressing only the kinds of behaviours that researchers should expect from contemporary data resources, how the FAIR principles should manifest in reality was largely open to interpretation. As support for the Principles has spread, so has the breadth of these interpretations. In observing this creeping spread of interpretation, several of the original authors felt it was now appropriate to revisit the Principles, to clarify both what FAIRness is, and is not.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.