Patients with diabetes require annual screening for effective timing of sight-saving treatment. However, the lack of screening and the shortage of ophthalmologists limit the ocular health care available. This is stimulating research into automated analysis of the reflectance images of the ocular fundus. Publications applicable to the automated screening of diabetic retinopathy are summarised. The review has been structured to mimic some of the processes that an ophthalmologist performs when examining the retina. Thus image processing tasks, such as vessel and lesion location, are reviewed before any intelligent or automated systems. Most research has been undertaken in identification of the retinal vasculature and analysis of early pathological changes. Progress has been made in the identification of the retinal vasculature and the more common pathological features, such as small aneurysms and exudates. Ancillary research into image preprocessing has also been identified. In summary, the advent of digital data sets has made image analysis more accessible, although questions regarding the assessment of individual algorithms and whole systems are only just being addressed.