In the direct formulation of the boundary element method, body-force and thermal loads manifest themselves as additional volume integral terms in the boundary integral equation. The exact transformation of the volume integral associated with body-force loading into surface ones for two-dimensional elastostatics in general anisotropy, has only very recently been achieved. This paper extends the work to treat two-dimensional thermoelastic problems which, unlike in isotropic elasticity, pose additional complications in the formulation. The success of the exact volume-to-surface integral transformation and its implementation is illustrated with three examples. The present study restores the application of BEM to two-dimensional anisotropic elastostatics as a truly boundary solution technique even when thermal effects are involved.