Abstract. San Salvador Volcanic Complex (El Salvador) and Nejapa-Chiltepe Volcanic Complex (Nicaragua) have been characterized by a significant variability in eruption style and vent location. Densely inhabited cities are in their surroundings, including the metropolitan areas of San Salvador (~2.4 M people) and Managua (~1.4 M people), respectively. In this study we present novel vent opening probability maps for these volcanic complexes, which are based on a multi-model approach that relies on kernel density estimators. Our volcanological dataset includes: (1) the location of past vents, (2) the mapping of the main fault structures, and (3) the eruption styles of past events, obtained from the critical analysis of literature and/or inferred from volcanic deposits and morphological features observed remotely and in the field. In particular, we present thematic vent opening maps, i.e. we consider different hazardous phenomena separately, including lava emission, small-scale pyroclastic density currents, ejection of ballistic projectiles, and low-intensity pyroclastic fallout. To illustrate the effects of considering the expected eruption style in the construction of vent opening maps, we focus on the analysis of small-scale pyroclastic density currents derived from phreatomagmatic activity or from low-intensity magmatic volcanism. For the numerical simulation of these phenomena we adopted the recently developed branching energy cone model by using the program ECMapProb. Our results show that the implementation of thematic maps of vent opening can produce significantly different hazard levels from those estimated with traditional, non-thematic, maps.