This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. Flocculation studies between cationic polymers and oppositely charged colloidal particles are reported in which both flocculation kinetics and floc structures are systematically investigated. The flocculation rate constant, stability ratio and kinetics laws are experimentally determined using particle counting for two polymer architectures; a cationic linear polymer and a two-branched polymer. Comparisons are also made using NaCl at different ionic concentrations for the destabilization of the colloidal particles. Detailed measurements of electrophoretic mobility and kinetics rate constants on varying the polymer dosage are reported. Results suggest that the polymer architecture plays important roles on the polymer dosage for the rapid destabilization of the colloidal suspension. The branched polymer at optimal dosage exhibits the highest flocculation rate constant, whereas on the other hand, the linear polymer concentration range of flocculation is larger. In both cases, polymer flocculation is more efficient by a factor of 5e6 than charge screening effects due to the presence of salt. Analysis of the stability ratio indicates that tele-bridging flocculation and electrostatic forces dictate the stability of the charged latex particle suspension. It is shown that the fractal concepts which are valid for aggregation processes are also applicable here and branched polymers as well as linear polymers yield to the formation of compact flocs in comparison to those obtained with salt.