2018
DOI: 10.4236/epe.2018.101002
|View full text |Cite
|
Sign up to set email alerts
|

A Generic Battery Model and Its Parameter Identification

Abstract: A new dynamic model is developed in this paper based on the generic MATLAB battery model. The battery capacity is expressed as a function of the self-discharge rate, the discharge current, the cycling life and the temperature of the battery. The dependence of the model parameters on cycle life and temperature are estimated from the first order approximation. The detailed procedures and formula to extract the model parameters are presented and the extraction relies only on the discharge curves at two different … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
11
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 16 publications
(12 citation statements)
references
References 16 publications
0
11
0
1
Order By: Relevance
“…Konstante degradacije utiču na parametre jednačine (1.8) i zbog toga se parametri računaju na sledeći način: Ovde su takođe iskorišćene modifikovane jednačine sa konstantama degradacije za realizaciju efekta starenja. U sledećim jednačinama možemo uvideti kako životni ciklus baterije utiče na sve parametre: E0(n) = E0 * (1 + k vn1 * (n -1)) (1.14) K(n) = K * ( 1 + k kn1 * (n -1)) (1.15) Q(n) = Q * ( 1+k qn1 *(n -h1) + k qn2 * (n -1)) (1.16) A(n) = A * ( 1+k an1 * (n -1)) (1.17) k xn1 je konstanta degradacije prvog reda, a k xn2 je konstanta degradacije drugog reda gde je x parametar koji zavisi od životnog ciklusa baterije [4]. Zaključno sa temperaturnim efektom i efektom starenja jednačina izlaznog napona modela baterije glasi: Obe baterije rade na sličnom principu, sa istim vrednostima parametara, a na osnovu grafika se vidi da se u istom vremenskom trenutku one isprazne.…”
Section: Temperaturni Efekatunclassified
“…Konstante degradacije utiču na parametre jednačine (1.8) i zbog toga se parametri računaju na sledeći način: Ovde su takođe iskorišćene modifikovane jednačine sa konstantama degradacije za realizaciju efekta starenja. U sledećim jednačinama možemo uvideti kako životni ciklus baterije utiče na sve parametre: E0(n) = E0 * (1 + k vn1 * (n -1)) (1.14) K(n) = K * ( 1 + k kn1 * (n -1)) (1.15) Q(n) = Q * ( 1+k qn1 *(n -h1) + k qn2 * (n -1)) (1.16) A(n) = A * ( 1+k an1 * (n -1)) (1.17) k xn1 je konstanta degradacije prvog reda, a k xn2 je konstanta degradacije drugog reda gde je x parametar koji zavisi od životnog ciklusa baterije [4]. Zaključno sa temperaturnim efektom i efektom starenja jednačina izlaznog napona modela baterije glasi: Obe baterije rade na sličnom principu, sa istim vrednostima parametara, a na osnovu grafika se vidi da se u istom vremenskom trenutku one isprazne.…”
Section: Temperaturni Efekatunclassified
“…where E a , i L (t), η sdisch represent the available battery energy, the load current and the "battery energy efficiency" respectively [26]. The input-output battery model Equation ( 1) is a simplified version of the original Shepherd's combined model that follows the development from [25] and [27][28][29] replacing:…”
Section: Li-ion Cobalt Model In Continuous Time State Space Represent...mentioning
confidence: 99%
“…A collection of such of driving cycles profiles is stored in a large database of the US National Renewable Energy Laboratory (NREL) Advanced Simulator (ADVISOR) integrated into a MATLAB simulation environment [10]. The ADVISOR simulator is recommended by the excellent results obtained in [10] and by the fact that so far it has been one of the most used software design tools in the HEV/EV automotive industry, as mentioned in [11,[29][30][31][32]. More details about this integrated ADVISOR MATLAB platform can be found in [10].…”
Section: Model Validation On Advisor Matlab Integrated Platformmentioning
confidence: 99%
See 1 more Smart Citation
“…The complicated chemical reaction and transport equations restricts the use of Multi-physics Electrochemical models for grid applications though they are well developed. In [ 36 ], the generic MATLAB battery models are analyzed in detail and a modified dynamic model is proposed. Due to simplicity and relatively high accuracy, the generic models are widely employed in various applications.…”
Section: Introductionmentioning
confidence: 99%