Planetary mapping product established by topographic remote sensing is one of the most significant achievements of contemporary technology. Modern planetary remote sensing technology now measures the topography of familiar solid planets/satellites such as Mars and the Moon with sub-meter precision, and its applications extend to the Kuiper Belt of the Solar System. However, due to a lack of fundamental knowledge of planetary remote sensing technology, the general public and even the scientific community often misunderstand these astounding accomplishments. Because of this technical gap, the information that reaches the public is sometimes misleading and makes it difficult for the scientific community to effectively respond to and address this misinformation. Furthermore, the potential for incorrect interpretation of the scientific analysis might increase as planetary research itself increasingly relies on publicly accessible tools and data without a sufficient understanding of the underlying technology. This review intends to provide the research community and personnel involved in planetary geologic and geomorphic studies with the technical foundation of planetary topographic remote sensing. To achieve this, we reviewed the scientific results established over centuries for the topography of each planet/satellite in the Solar System and concisely presented their technical bases. To bridge the interdisciplinary gap in planetary science research, a special emphasis was placed on providing photogrammetric techniques, a key component of remote sensing of planetary topographic remote sensing.