2017
DOI: 10.1109/tvt.2016.2646139
|View full text |Cite
|
Sign up to set email alerts
|

A Genetic Algorithm-Based Antenna Selection Approach for Large-but-Finite MIMO Networks

Abstract: CitationMakki This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Abstract-We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users' data request probabilities, we develop an efficient antenna selection scheme using ge… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

1
59
0
11

Year Published

2019
2019
2022
2022

Publication Types

Select...
5
1
1

Relationship

0
7

Authors

Journals

citations
Cited by 50 publications
(71 citation statements)
references
References 14 publications
1
59
0
11
Order By: Relevance
“…For the JASUS problem, the vectors ω and ω are subject to constraint functions (12) and (13), respectively. However, employing functions (32) and (33) with MIS to generate samples, but we cannot ensure that the samples meet the constraints (12) and (13). In order to ensure that the samples drawn from (32) and (33) meet the constraints (12) and (13), we propose a new projection strategy.…”
Section: Constraints For the Amcmc-based Jasus Problemmentioning
confidence: 99%
See 1 more Smart Citation
“…For the JASUS problem, the vectors ω and ω are subject to constraint functions (12) and (13), respectively. However, employing functions (32) and (33) with MIS to generate samples, but we cannot ensure that the samples meet the constraints (12) and (13). In order to ensure that the samples drawn from (32) and (33) meet the constraints (12) and (13), we propose a new projection strategy.…”
Section: Constraints For the Amcmc-based Jasus Problemmentioning
confidence: 99%
“…Different schemes were used in many types of research, such as hybrid precoding and spatial modulation, to reduce the cost of the hardware and the power consumption of the system [10]. One of the best schemes to solve this problem is to applying antenna selection [11][12][13] to decide optimal subset of BS transmit antennas for decreasing the required number of high pricey RF chains while decreasing the resulting network performance loss.…”
Section: Introductionmentioning
confidence: 99%
“…REDE IMUNOLÓGICA ARTIFICIAL PARA PROBLEMAS COMBINATORIAIS -COBAINET Dada a característica combinatorial do problema a ser tratado e o grande espaço de soluções a ser explorado, uma possível abordagemé o uso de meta-heurísticas que permitam explorar este espaço com baixa complexidade computacional. Neste sentido, algumas pesquisas que utilizam AG mostraram resultados promissores (e.g., [3] e [4]). Contudo, dado o teorema no free lunch para otimização [7] e resultados encorajadores e superiores ao AG em problemas combinatoriais obtidos pela meta-heurística baseada na teoria de redes imunológicas artificiais, o concentration-based artificial-immune network -CobAiNet [6], decidiu-se pela avaliação desta técnica neste contexto de MIMO de larga escala e seleção de antenas, e sua comparação com a técnica ITES [5] que já demonstrava ser melhor que o AG.…”
Section: Seleção De Antenasunclassified
“…Uma possibilidadeé tratar o problema de seleção de antenas como um problema de otimização convexa aplicando relaxamento [1] [2], com o intuito de maximizar a soma das capacidades. Em [3] e [4] se utilizam de algoritmos genéticos (AG) para realizar a busca. Por fim, uma técnica de seleção de antenas denominada ITES -iterative searches [5]é aplicada fora de um contexto de MIMO de larga escala com o propósito de minimizar a taxa de erro de bit (bit error rate -BER, em inglês).…”
Section: Introductionunclassified
See 1 more Smart Citation