Neurons and glia are produced in stereotyped patterns after neuroblast cell division during development of the Drosophila central nervous system. The first cell division of thoracic neuroblast 6-4 (NB6-4T) is asymmetric, giving rise to a glial precursor cell and a neuronal precursor cell. In contrast, abdominal NB6-4 (NB6-4A) divides symmetrically to produce two glial cells. To understand the relationship between cell division and glia-neuron cell fate determination, we examined and compared the effects of known cell division mutations on the NB6-4T and NB6-4A lineages. Based on observation of expression of glial fate determination and early glial differentiation genes, the onset of glial differentiation occurred in NB6-4A but not in NB6-4T when both cell cycle progression and cytokinesis were genetically arrested. On the other hand, glial differentiation started in both lineages when cytokinesis was blocked with intact cell cycle progression. These results showed that NB6-4T, but not NB6-4A, requires cell cycle progression for acquisition of glial fate, suggesting that distinct mechanisms trigger glial differentiation in the different lineages.