Galactinol synthase (GolS - EC 2.4.1.123) is classified as a key enzyme that catalyzes the first step in the synthesis pathway of the raffinose family (RFOs). Although GolS genes have been characterized in several important species, their characterization in sweet potatoes has yet to be explored. Ipomoea trifida (Kunth) G. Don (2n = 2x = 30) is currently described as one of the closest ancestors of the sweet potato and considered an excellent crossbreeding species, allowing the introgression of important genes such as GolS. This study aimed to identify and characterize in silico the GolS genes in I. trifida and compare with I. triloba. We identified nine GolS genes, five in I. triloba and four in I. trifida. Our study encompassed various aspects, including gene structure analysis, motif identification, chromosomal distribution, synteny analysis, and gene expression. The presence of gene duplications and purifying selection were highlighted, suggesting the evolutionary significance of GolS genes in these species. Phylogenetic analysis categorized GolS proteins into three groups, potentially reflecting distinct functional roles. Furthermore, synteny analysis revealed orthologous relationships between GolS genes in the studied species and related plants, contributing to our understanding of their evolutionary history. In silico expression analysis across diverse tissues unveiled tissue-specific expression patterns, hinting at specialized roles for GolS genes in different plant organs. These findings contribute to the broader field of plant genetics, carbohydrate metabolism, and agriculture, offering opportunities for crop improvement and sustainable food production.