Polychlorinated biphenyls (PCBs) are persistent organic pollutants that are widely distributed in the environment. It is noteworthy that the PCBs are endocrine-disrupting substances, and their toxicity induces cancer and damage to the mammalian reproductive system, immune system, stomach, skin, liver, etc. This work aimed to synthesize 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate/tin disulfide composite material and to study its material properties, electrochemical properties, and application to PCB detection. The nanostructured tin disulfide (SnS 2) synthesized by hydrothermal technique and 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate were sequentially modified onto the disposable screen-printed carbon electrode (SPCE) via titration using a micropipette. The 3A-amino-3A-deoxy-(2AS, 3AS)-β-cyclodextrin hydrate (β-CD) improved the selectivity of the modified electrode. The fabricated β-CD/SnS 2 /SPCE was employed to determine the presence of PCBs by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The detection range was 0.625-80 μM, with a limit detection of approximately 5 μM. The electrodes were as stable as 88% after 7 days' storage. The results showed that the β-CD successfully encapsulated PCBs to achieve an electrochemical sensor that reduced the time and increased the convenience of PCBs detection.