Purpose
This paper aims to discuss the key factors affecting the quality characteristics, such as the number of solder balls, the spread distance of residual underfill and the completion time of the underfilling.
Design/methodology/approach
The Taguchi method is applied to configure the orthogonal table and schedule and execute the experiment. In addition, principal components analysis is used to obtain the points. Then, based on gray relational analysis and the technique for order preference by similarity to ideal solution, the closeness between each quality characteristic and the ideal solution is adopted as the basis for evaluating the quality characteristics.
Findings
The optimal parameter combination is proposed, which includes 4 dispensing (11 mg/dispensing), a “half flow” interval state, 80°C preheating module PCB board and an L-shaped dispensing path and verification testing is performed.
Originality/value
For vehicles and handheld electronic products, solder joints that connect electronic components to printed circuit boards may be cracked due to collision, vibration or falling. Consequently, solder balls are closely surrounded and protected by the underfill to improve joint strength and resist external force factors, such as collision and vibration. This paper addresses the defects caused during the second reflow process of a vehicle electronic communication module after the underfilling process.