Abstract.The dominant modes of variability of precipitation for the whole of China over the past millennium and the mechanism governing their spatial structure remain unclear. This is mainly due to insufficient high-resolution proxy records of precipitation in western China. Numerous treering chronologies have recently been archived in publicly available databases through PAGES2k activities, and these provide an opportunity to refine precipitation field reconstructions for China. Based on 479 proxy records, including 371 tree-ring width chronologies, a tree-ring isotope chronology, and 107 drought/flood indices, we reconstruct the precipitation field for China for the past half millennium using the optimal information extraction method. A total of 3631 of 4189 grid points in the reconstruction field passed the cross-validation process, accounting for 86.68 % of the total number of grid points. The first leading mode of variability of the reconstruction shows coherent variations over most of China. The second mode is a north-south dipole in eastern China characterized by variations of the same sign in western China and northern China (except for Xinjiang province). It is likely controlled by the El Niño-Southern Oscillation (ENSO) variability. The third mode is a "sandwich" triple mode in eastern China including variations of the same sign in western China and central China. The last two modes are reproduced by most of the six coupled climate models' last millennium simulations performed in the framework of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3). In particular, the link of the second mode with ENSO is confirmed by the models. However, there is a mismatch between models and proxy reconstructions in the time development of different modes. This mismatch suggests the important role of internal variability in the reconstructed precipitation mode variations of the past 500 years.