Machine learning now is used across many sectors and provides consistently precise predictions. The machine learning system is able to learn effectively because the training dataset contains examples of previously completed tasks. After learning how to process the necessary data, researchers have proven that machine learning algorithms can carry out the whole work autonomously. In recent years, cancer has become a major cause of the worldwide increase in mortality. Therefore, early detection of cancer improves the chance of a complete recovery, and Machine Learning (ML) plays a significant role in this perspective. Cancer diagnostic and prognosis microarray dataset is available with the biopsy dataset. Because of its importance in making diagnoses and classifying cancer diseases, the microarray data represents a massive amount. It may be challenging to do an analysis on a large number of datasets, though. As a result, feature selection is crucial, and machine learning provides classification techniques. These algorithms choose the relevant features that help build a more precise categorization model. Accurately classifying diseases is facilitated as a result, which aids in disease prevention. This work aims to synthesize existing knowledge on cancer diagnosis using machine learning techniques into a compact report. Current research work aims to propose an ensemble-based machine learning model En-PaFlower using Particle Swarm Optimization (PSO) as the feature selection algorithm, Flower Pollination algorithm (FPA) as the optimization algorithm with the majority voting algorithm. Finally, the performance of the proposed algorithm is evaluated over three different types of cancer disease datasets with accuracy, precision, recall, specificity, and F-1 Score etc as the evaluation parameters. The empirical analysis shows that the proposed methodology shows highest accuracy as 95.65%.