Molecular genetics is highly related with prognosis of high-grade glioma. Accordingly, the latest WHO guideline recommends that molecular subgroups of the genes, including IDH, 1p/19q, MGMT, TERT, EGFR, Chromosome 7/10, CDKN2A/B, need to be detected to better classify glioma and guide surgery and treatment. Unfortunately, there is no preoperative or intraoperative technology available for accurate and comprehensive molecular subgrouping of glioma. Here, we develop a deep learning-assisted fiber-optic Raman diagnostic platform for accurate and rapid molecular subgrouping of high-grade glioma. Specifically, a total of 2354 fingerprint Raman spectra was obtained from 743 tissue sites (astrocytoma: 151; oligodendroglioma:150; glioblastoma (GBM): 442) of 44 high-grade glioma patients. The convolutional neural networks (ResNet) model was then established and optimized for molecular subgrouping. The mean area under receiver operating characteristic curves (AUC) for identifying the molecular subgroups of high-grade glioma reached 0.904, with mean sensitivity of 83.3%, mean specificity of 85.0%, mean accuracy of 83.3%, and mean time expense of 10.6 seconds. The diagnosis performance using ResNet model was shown to be superior to PCA-SVM and UMAP models, suggesting that high dimensional information from Raman spectra would be helpful. In addition, for the molecular subgroups of GBM, the mean AUC reached 0.932, with mean sensitivity of 87.8%, mean specificity of 83.6%, and mean accuracy of 84.1%. Furthermore, according to saliency maps, the specific Raman features corresponding to tumor-associated biomolecules (e.g., nucleic acid, tyrosine, tryptophan, cholesteryl ester, fatty acid, and collagen) were found to contribute to the accurate molecular subgrouping. Collectively, this study opens up new opportunities for accurate and rapid molecular subgrouping of high-grade glioma, which would assist optimal surgical resection and instant post-operative decision-making.