Magnetorheological dampers (MRDs) are of great interest in engineering due to their continuously adjustable damping characteristics. Accurate models are essential for optimizing MRDs and analyzing system dynamics. However, conventional methods widely overlook the impact of excitation frequency and amplitude. To address this issue, this work proposes a modified Bouc–Wen model that can be adapted to various excitation conditions. The model’s parameters depend on the current, excitation frequency, and amplitude. The mechanical characteristics of the MRD were analyzed by the tests. The parameters in the Bouc–Wen model were identified by combining the harmonic balance method and the genetic algorithm. The modified Bouc–Wen model was established by analyzing the variation of each parameter with current, excitation frequency, and amplitude. Finally, the agreement between the modified prediction model and the test results was verified under sinusoidal excitation of 80 mm and 1 Hz. The average relative errors were 3.87%, 2.82%, 2.45%, 2.19%, and 3.27% for current excitations of 0 A, 0.5 A, 1 A, 1.5 A, and 2.0 A, respectively. Since the MRD in this paper operates from 0.5 Hz to 2 Hz, the modified model was validated in the same range. Experiments demonstrate that the modified Bouc–Wen model efficiently and accurately describes the mechanical properties of the MRD under various excitation conditions.