A series of calculations has been conducted to study the high-speed interaction of space debris (SD) particles with screens of finite thickness. For the first time, taking into account the fracture effects, a numerical solution has been obtained for the problem of high-velocity interaction between SD particles and a volumetrically reinforced penetrating composite screen. The calculations were performed using the REACTOR 3D software package in a three-dimensional setup. To calibrate the material properties of homogeneous screens made of aluminum alloy A356, stainless steel 316L, and multilayer screens, methodical load calculations were carried out. The properties of materials have been verified based on experimental data through systematic calculations of the load on homogeneous screens made of aluminum alloy A356, stainless steel 316L, and multilayer screens comprising a combination of aluminum and steel plates. Several options for the numerical design of heterogeneous screens based on A356 and 316L were considered, including interpenetrating reinforcement with steel inclusions and a gradient distribution of steel throughout the thickness of an aluminum matrix. The study has revealed that the screens constructed as a two-layer composite of A356/316L, volumetrically reinforced composite screens, and heterogeneous screens with a direct gradient distribution of steel in the aluminum matrix provide protection for devices from both a single SD particle and streams of SD particles moving at speeds of up to 6 km/s. SD particles were modeled as spherical particles with a diameter of 1.9 mm made of the aluminum alloy Al2017-T4 with a mass of 10 mg.