Two Hybrid Power System (HPS) topologies are proposed in this paper based on the Renewable Energy Sources (RESs) and a Fuel Cell (FC) system-based backup energy source. Photovoltaic arrays and wind turbines are modeled as RESs power flow. Hydrogen and air needed for FC stack to generate the power requested by the load are achieved through the Load-Following control loop. This control loop will regulate the fueling flow rate to load level. A real-time optimization strategy for RES/FC HPS based on Extremum Seeking Control will find the Maximum Efficiency Point or best fuel economy point by control of the boost converter. Therefore, two HPS configurations and associated strategies based on Load-Following and optimization loops of the fueling regulators were studied here and compared using the following performance indicators: the FC net power generated on the DC bus, the FC energy efficiency, the fuel consumption efficiency, and the total fuel consumption. An increase in the FC system’s electrical efficiency and fuel economy of up to 2% and 12% respectively has been obtained using the proposed optimization strategies compared with a baseline strategy.