Electron crystallography has evolved as a method that can be used either alternatively or in combination with three-dimensional crystallization and X-ray crystallography to study structure-function questions of membrane proteins, as well as soluble proteins. Screening for two-dimensional (2D) crystals by transmission electron microscopy (EM) is the critical step in finding, optimizing, and selecting samples for high-resolution data collection by cryo-EM. Here we describe the fundamental steps in identifying both large and ordered, as well as small 2D arrays, that can potentially supply critical information for optimization of crystallization conditions. By working with different magnifications at the EM, data on a range of critical parameters is obtained. Lower magnification supplies valuable data on the morphology and membrane size. At higher magnifications, possible order and 2D crystal dimensions are determined. In this context, it is described how CCD cameras and online-Fourier Transforms are used at higher magnifications to assess proteoliposomes for order and size.While 2D crystals of membrane proteins are most commonly grown by reconstitution by dialysis, the screening technique is equally applicable for crystals produced with the help of monolayers, native 2D crystals, and ordered arrays of soluble proteins. In addition, the methods described here are applicable to the screening for 2D crystals of even smaller as well as larger membrane proteins, where smaller proteins require the same amount of care in identification as our examples and the lattice of larger proteins might be more easily identifiable at earlier stages of the screening. Carbon-coated 400-mesh copper EM grids are prepared by negative stain. Uranyl acetate is frequently used and provides a long-lasting stain in terms of storage of the solution for several months before use as well as suitability for long-term storage of grids. In contrast, other negative stains such as uranyl formate, while providing excellent staining, need to be freshly made 1 . For fast preparation of a large number of grids to be used for screening of 2D crystallization trials, a modified version of negative staining is used. A volume of 2 μL of sample is pipetted onto a carbon-covered EM grid and incubated for 60 s. This is followed by blotting from the edge with a torn piece of Whatman #4 filter paper ( Figure 1; video), and then 2 μL of 1% uranyl acetate are applied immediately, which are again blotted from the edge of the grid after 30 s. Touching the grid on the rim with the torn edge of the filter paper ensures optimal removal of liquid without removal of proteoliposomes. Furthermore, drying at the edge of the grid ensures improved preservation of the carbon film. Care must be taken in preparation and handling of the grids, as breakage of the delicate carbon film prevents sample adhesion and can result in an inaccurate representation of the sample. While traditionally larger sample volumes of 5 μL were and are routinely used for grid preparation, preciou...