evidence about the likely involvement of PAR genes in placenta formation, early embryonic development and genomic imprinting are presented. Copyright © 2011 S. Karger AG, Basel The pseudoautosomal region (PAR) is a short region of sequence homology between the sex chromosomes and is involved in sex chromosome pairing, recombination and segregation in meiosis of the heterogametic sex. The region has been found in many plant and animal species, including mammals [Charlesworth et al., 2005;Ming and Moore, 2007].The mammalian PAR was discovered almost 80 years ago through studies of male meiosis in rats, where a synaptonemal complex between the X and Y was detected [Koller and Darlington, 1934]. Similar structures were soon found between the terminal ends of the X and Y chromosomes in several other eutherian species [Pathak and Elder, 1980], but not in marsupials [Sharp, 1982]. These observations have later been validated through detailed molecular genetic studies both in eutherian [Martin, 2006;Oliver-Bonet et al., 2006;Kauppi et al., 2011] and marsupial [Page et al., 2005[Page et al., , 2006 mammals.Whole or partial genome sequence data are available for almost all main domestic species -alpaca, cat, cat-
Key WordsAneuploidy ؒ Domestic species ؒ Pseudoautosomal region ؒ Sex chromosomes ؒ X-monosomy ؒ X-trisomy
AbstractThe pseudoautosomal region (PAR) is a unique and specialized segment on the mammalian sex chromosomes with known functions in male meiosis and fertility. Detailed molecular studies of the region in human and mouse show dramatic differences between the 2 PARs. Recent mapping efforts in horse, dog/cat, cattle/ruminants, pig and alpaca indicate that the PAR also varies in size and gene content between other species. Given that PAR genes escape X inactivation, these differences might critically affect the genetic consequences, such as embryonic survival and postnatal phenotypes of sex chromosome aneuploidies. The aim of this review is to combine the available information about the organization of the PAR in domestic species with the cytogenetic data on sex chromosome aneuploidies. We show that viable XO individuals are relatively frequently found in species with small PARs, such as horses, humans and mice but are rare or absent in species in which the PAR is substantially larger, like in cattle/ruminants, dogs, pigs, and alpacas. No similar correlation can be detected between the PAR size and the X chromosome trisomy in different species. Recent