In this paper, a simplified approach to identify sectional deformation modes of prismatic cross-sections is presented and utilized in the establishment of a higher-order beam model for the dynamic analyses of thin-walled structures. The model considers the displacement field through a linear superposition of a set of basis functions whose amplitudes vary along the beam axis. These basis functions, which describe basis deformation modes, are approximated from nodal displacements on the discretized cross-section midline, with interpolation polynomials. Their amplitudes acting in the object vibration shapes are extracted through a modal analysis. A procedure similar to combining like terms is then implemented to superpose basis deformation modes, with equal or opposite amplitude, to produce primary deformation modes. The final set of the sectional deformation modes are assembled with primary deformation modes, excluding the ones constituting conventional modes. The derived sectional deformation modes, hierarchically organized and physically meaningful, are used to update the basis functions in the higher-order beam model. Numerical examples have also been presented and the comparison with ANSYS shell model showed its accuracy, efficiency, and applicability in reproducing three-dimensional behaviors of thin-walled structures.