A fluorescence and absorption chemosensor (SAAT) based on 5‐(hydroxymethyl)‐salicylaldehyde (SA) and o‐aminothiophenol (AT) was designed and synthesized. SAAT in DMSO–HEPES (20.0 mM, v/v, 1:99, pH = 7.0) solution shows a highly selective and sensitive absorption and an ‘on–off’ fluorescence response to Cu2+ ions in aqueous solutions over all other competitive metal ions including Na+, Ag+, Ba2+, Ca2+, Cd2+, Mg2+, Zn2+, Cr3+, Al3+, Hg2+, K+, Mn2+, Ni2+, Sr2+, Tb3+ and Co2+. SAAT exhibits ratiometric absorption sensing ability for Cu2+ ions. Importantly, SAAT also can sense Cu2+ ions using fluorescence quenching, the fluorescence intensity of SAAT showed a good linear relationship with Cu2+ concentration, and the detection limit of Cu2+ was 0.34 μM. The results of Job's plot, Benesi–Hildebrand plot, mass spectra, and density functional theory calculations confirmed that the selective absorption and fluorescence response were attributed to the formation of a 1:1 complex between SAAT and Cu2+. SAAT in test film could identify Cu2+ in water samples using the intuitive fluorescence colour change under a UV lamp. SAAT has great application value as a selective and sensitive chemosensor to discriminate and detect Cu2+ ions.