2021
DOI: 10.48550/arxiv.2103.01403
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

A HINT from Arithmetic: On Systematic Generalization of Perception, Syntax, and Semantics

Abstract: Inspired by humans' remarkable ability to master arithmetic and generalize to unseen problems, we present a new dataset, HINT, to study machines' capability of learning generalizable concepts at three different levels: perception, syntax, and semantics. In particular, concepts in HINT, including both digits and operators, are required to learn in a weakly-supervised fashion: Only the final results of handwriting expressions are provided as supervision. Learning agents need to reckon how concepts are perceived … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
6
0
3

Year Published

2021
2021
2022
2022

Publication Types

Select...
2
1

Relationship

1
2

Authors

Journals

citations
Cited by 3 publications
(10 citation statements)
references
References 44 publications
1
6
0
3
Order By: Relevance
“…In other words, they can only memorize token patterns from existing corpus rather than understand the rationale behind the language context, thus would fail to perform deductive or abductive reasoning tasks. Similar observation has been investigated by other reasoning tasks, including IQ test (Zhang et al, 2019a(Zhang et al, ,b, 2021b, number sense , causal reasoning (Edmonds et al, 2018(Edmonds et al, , 2019bZhang et al, 2021a), and more generic generalization tasks (Lake et al, 2015;Xie et al, 2021;Li et al, 2021;.…”
Section: Evaluation and Resultssupporting
confidence: 66%
“…In other words, they can only memorize token patterns from existing corpus rather than understand the rationale behind the language context, thus would fail to perform deductive or abductive reasoning tasks. Similar observation has been investigated by other reasoning tasks, including IQ test (Zhang et al, 2019a(Zhang et al, ,b, 2021b, number sense , causal reasoning (Edmonds et al, 2018(Edmonds et al, , 2019bZhang et al, 2021a), and more generic generalization tasks (Lake et al, 2015;Xie et al, 2021;Li et al, 2021;.…”
Section: Evaluation and Resultssupporting
confidence: 66%
“…La solución propuesta por Q. Li et al, (2021), exhibe una fuerte generalización sistemática con una precisión general del 72%, superando a los métodos neuronales de end-to.end en casi un 33%. Alzaeemi et al, (2019) basan su trabajo en la performance de los modelos híbridos, haciendo foco en la introducción de lógica para el cálculo de parámetros y para decrementar la cantidad de neuronas en las capas ocultas.…”
Section: Falta De Generalizaciónunclassified
“…En Q. Li et al, (2021), los autores adoptan programas funcionales para entender el significado semántico de los conceptos, por lo que ven a la semántica del aprendizaje como una inducción del programa. La semántica de un concepto es tratada como una función.…”
Section: Aggregate-combine-readout Graph Neural Network)unclassified
See 1 more Smart Citation
“…This type of compositionality is central to the human ability to generalize from limited data to novel combinations (Lake et al, 2017). Recently, several datasets have been proposed to test systematic generalization of machine learning models-SCAN (Lake & Baroni, 2018), PCFG (Hupkes et al, 2020), CFQ (Keysers et al, 2020), and HINT (Li et al, 2021), to name a few. While conventional neural networks fail dramatically on these datasets, certain inductive biases have been explored to improve systematic generalization.…”
Section: Introductionmentioning
confidence: 99%