A new therapeutic approach to treat Alzheimer's disease (AD) is needed, and the use of growth factors is considered to be a candidate. Hepatocyte growth factor (HGF) is a unique multifunctional growth factor, which has the potential effect to exert neurotrophic action and induce angiogenesis. In this study, we examined the effects of overexpression of human HGF plasmid DNA using ultrasound-mediated gene transfer into the brain in an Ab-infused cognitive dysfunction mouse model. We demonstrated that HGF gene transfer significantly alleviated Ab-induced cognitive impairment in mice in behavioral tests. These beneficial effects of HGF might be due to (1) significant recovery of the vessel density in the dentate gyrus of the hippocampus, (2) upregulation of BDNF, (3) a significant decrease in oxidative stress and (4) synaptic enhancement. A pharmacological approach including gene therapy to increase the HGF level in combination with anti-Ab therapy might be a new therapeutic option for the treatment of AD.