In this study, a dual response surface model-based multi-objective robust optimization method is introduced to deal with the uncertainties in the tube hydroforming process. The objective of this study is to maximize the protrusion height and minimize the thinning ratio; meanwhile, the variations of the objectives should be minimized. A valid finite element model obtained from experimental result and LS-DYNA is employed to simulate the T-shape tube hydroforming process. To improve computation efficiency, radial basis function combined with Latin hypercube and orthogonal design sampling strategies is employed to construct dual response surface model, which are the mean and standard deviation response of the hydroforming process, respectively. The robust Pareto solutions can be obtained using NSGA-II; meanwhile, the ideal point method is used to obtain the most satisfactory solution from the Pareto solutions for the design engineers. As a conclusion, a significant improvement of the robustness can be achieved; however, the mean performance of the protrusion height has to be sacrificed.