2019
DOI: 10.1587/transinf.2019edp7033
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Feature Selection Method for Software Fault Prediction

Abstract: Fault prediction aims to identify whether a software module is defect-prone or not according to metrics that are mined from software projects. These metric values, also known as features, may involve irrelevance and redundancy, which hurt the performance of fault prediction models. In order to filter out irrelevant and redundant features, a Hybrid Feature Selection (abbreviated as HFS) method for software fault prediction is proposed. The proposed HFS method consists of two major stages. First, HFS groups feat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 25 publications
0
0
0
Order By: Relevance