2013
DOI: 10.1002/acs.2427
|View full text |Cite
|
Sign up to set email alerts
|

A hybrid gradient‐based and differential evolution algorithm for infinite impulse response adaptive filtering

Abstract: Global optimization algorithms (GO) had been applied to solve the adaptive infinite impulse response filtering problem, which is known to have multimodal error surface under certain conditions. However, although GO may be able to search multimodal surfaces, they have certain disadvantages. They may not converge to any minimum point, the convergence speed is reduced as the solution vectors move closer, and tracking ability for non-stationary environment is lacking. The traditional gradient descent method does n… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
6
0
1

Year Published

2015
2015
2021
2021

Publication Types

Select...
4
1
1

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(7 citation statements)
references
References 17 publications
0
6
0
1
Order By: Relevance
“…PSO-wFIPS achieves better results than DLTLBO on 5 functions, while DLTLBO performs better for the remaining 19 functions. FDR-PSO only obtains better performance than DLTLBO on 5 , 20 , and 21…”
Section: Comparisons On the Solution Accuracymentioning
confidence: 98%
See 4 more Smart Citations
“…PSO-wFIPS achieves better results than DLTLBO on 5 functions, while DLTLBO performs better for the remaining 19 functions. FDR-PSO only obtains better performance than DLTLBO on 5 , 20 , and 21…”
Section: Comparisons On the Solution Accuracymentioning
confidence: 98%
“…where V = [ 0 1 ⋅ ⋅ ⋅ 1 2 ⋅ ⋅ ⋅ ] denotes the digital IIR filter coefficient vector, is the number of samples used for the computation of the time-averaged cost function, and ( ) and ( ) are the filter's ideal and actual responses, respectively. 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 8.30 − 001 ± 8.07 − 001 1.99 + 000 ± 9.95 − 001 5.88 − 001 ± 5.49 − 001 2.19 + 000 ± 1.30 + 000 0.00e + 000 ± 0.00e + 000 8 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 2.07 − 010 ± 1.90 − 010 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 9 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 2.62 − 002 ± 1.29 − 002 6.93 − 002 ± 4.92 − 002 1.48 − 003 ± 3.31 − 003 4.44 − 017 ± 9.93 − 017 0.00e + 000 ± 0.00e + 000 10 1.27e − 004 ± 0.00e + 000 1.27e − 004 ± 0.00e + 000 2.41 + 002 ± 7.65 + 001 5.65 + 002 ± 1.88 + 002 4.82 + 002 ± 2.04 + 002 4.80 + 002 ± 1.81 + 002 5.92 + 001 ± 8.37 + 001 11 1.55 − 070 ± 3.46 − 070 4.39 − 066 ± 9.81 − 066 1.30 − 019 ± 1.51 − 019 2.85 − 102 ± 6.37 − 102 2.92 − 209 ± 0.00 + 000 8.70 − 190 ± 0.00 + 000 3.00e − 250 ± 0.00e + 000 12 14 3.55 − 015 ± 0.00 + 000 2.84 − 015 ± 1.59 − 015 5.76 − 011 ± 2.92 − 011 3.55 − 015 ± 0.00 + 000 3.55 − 015 ± 0.00 + 000 2.84 − 015 ± 1.59 − 015 1.78e − 015 ± 2.51e − 015 15 3.87 + 000 ± 1.28 + 000 3.66 + 000 ± 1.55 + 000 3.97 + 000 ± 3.24 + 000 7.56 + 000 ± 3.76 + 000 2.42 + 000 ± 1.81 + 000 2.98 + 000 ± 1.41 + 000 1.40e − 004 ± 1.97e − 004 16 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 1.48 − 007 ± 2.50 − 007 7.13 − 002 ± 1.26 − 001 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 17 1.48 − 003 ± 3.31 − 003 3.94 − 003 ± 5.67 − 003 1.04 − 001 ± 8.74 − 002 1.13 − 001 ± 5.80 − 002 5.41 − 003 ± 8.59 − 003 1.48 − 003 ± 3.31 − 003 0.00e + 000 ± 0.00e + 000 18 1.38 + 002 ± 1.22 + 002 1.07e + 002 ± 1.21e + 002 2.80 + 002 ± 1.28 + 002 5.29 + 002 ± 2.00 + 002 5.46 + 002 ± 3.23 + 002 5.44 + 002 ± 2.81 + 002 1.18 + 002 ± 0.00 + 000 19 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 2.21 − 020 ± 2.43 − 020 3.03 + 000 ± 4.14 + 000 0.00e + 000 ± 0.00e + 000 1.01 − 029 ± 2.26 − 029 2.52 − 029 ± 3.57 − 029 20 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 5.87 − 008 ± 2.46 − 008 0.00e + 000 ± 0.00e + 000 3.06 − 011 ± 5.16 − 011 2.47 − 010 ± 5.33 − 010 8.77 − 001 ± 1.23 + 000 21 1.83e − 017 ± 3.99e − 017 1.50 − 001 ± 2.13 − 001 4.50 + 000 ± 1.57 − 001 1.53 + 000 ± 2.06 + 000 1.05 − 001 ± 1.49 − 001 8.73 + 000 ± 1.78 + 001 4.55 + 000 ± 8.73 − 001 22 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 2.26 + 000 ± 9.23 − 001 3.58 + 000 ± 2.06 + 000 7.76 + 000 ± 3.02 + 000 9.55 + 000 ± 4.37 + 000 3.48 + 000 ± 7.04 − 001 23 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 2.32 − 002 ± 1.71 − 002 6.88 − 001 ± 5.35 − 001 5.86 − 002 ± 2.77 − 002 6.75 − 002 ± 3.32 − 002 5.04 − 002 ± 3.65 − 002 24 0.00e + 000 ± 0.00e + 000 0.00e + 000 ± 0.00e + 000 5.73 − 011 ± 2.17 − 011 3.54 + 000 ± 1.98 + 000 6.34 − 001 ± 9. To achieve higher stop band attenuation and to have better control on the transition width, the frequency cost function [27] to be minimized is defined as…”
Section: Digital Iir Filter Identificationunclassified
See 3 more Smart Citations