2020
DOI: 10.1016/j.camwa.2019.12.005
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid High-Order method for the incompressible Navier–Stokes problem robust for large irrotational body forces

Abstract: We develop a novel Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces. The key ingredients of the method are discrete versions of the body force and convective terms in the momentum equation formulated in terms of a globally divergence-free velocity reconstruction. Denoting by λ the L 2 -norm of the irrotational part of the body force, the method is designed so as to mimick two key properties of the continuous problem at the discrete level, namely th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
10
0

Year Published

2020
2020
2022
2022

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 19 publications
(10 citation statements)
references
References 42 publications
(90 reference statements)
0
10
0
Order By: Relevance
“…First we cite the following integration by parts formula and the estimates for projection operators, which will be used in the error estimate.Lemma Let D$$ D $$ be a simply connected open polyhedral subset of normalΩ$$ \Omega $$ . For all boldv,boldw,boldzH1false(Dfalse)d$$ \mathbf{v},\mathbf{w},\mathbf{z}\in {\left[{H}^1(D)\right]}^d $$ , it holds ( [46] , Proposition 1) D(goodbreak×boldw)goodbreak×boldvboldzdboldxgoodbreak=Dboldwvboldzdboldxgoodbreak−Dboldwzboldv.$$ {\int}_D\left(\nabla \times \mathbf{w}\right)\times \mathbf{v}\cdot \mathbf{z}d\mathbf{x}={\int}_D\nabla \mathbf{w}\mathbf{v}\cdot \mathbf{z}d\mathbf{x}-{\int}_D\nabla \mathbf{w}\mathbf{z}\cdot \mathbf{v}. $$ Lemma For boldvWs,r(T)$$ \mathbf{v}\in {W}^{s,r}(T) $$ and all m{0,,s}$$ m\in \left\{0,\dots, s\right\} $$, vboldQ0vWm,r(T)hTsm|boldv|Ws,r(T).$$ {\left|\mathbf{v}-{\mathbf{Q}}_0\mathbf{v}\right|}_{W^{m,r}(T)}\lesssim {h}_T^{s-m}{\left|\mathbf{v}\right|}_{W^{s,r}(T)}.…”
Section: Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…First we cite the following integration by parts formula and the estimates for projection operators, which will be used in the error estimate.Lemma Let D$$ D $$ be a simply connected open polyhedral subset of normalΩ$$ \Omega $$ . For all boldv,boldw,boldzH1false(Dfalse)d$$ \mathbf{v},\mathbf{w},\mathbf{z}\in {\left[{H}^1(D)\right]}^d $$ , it holds ( [46] , Proposition 1) D(goodbreak×boldw)goodbreak×boldvboldzdboldxgoodbreak=Dboldwvboldzdboldxgoodbreak−Dboldwzboldv.$$ {\int}_D\left(\nabla \times \mathbf{w}\right)\times \mathbf{v}\cdot \mathbf{z}d\mathbf{x}={\int}_D\nabla \mathbf{w}\mathbf{v}\cdot \mathbf{z}d\mathbf{x}-{\int}_D\nabla \mathbf{w}\mathbf{z}\cdot \mathbf{v}. $$ Lemma For boldvWs,r(T)$$ \mathbf{v}\in {W}^{s,r}(T) $$ and all m{0,,s}$$ m\in \left\{0,\dots, s\right\} $$, vboldQ0vWm,r(T)hTsm|boldv|Ws,r(T).$$ {\left|\mathbf{v}-{\mathbf{Q}}_0\mathbf{v}\right|}_{W^{m,r}(T)}\lesssim {h}_T^{s-m}{\left|\mathbf{v}\right|}_{W^{s,r}(T)}.…”
Section: Resultsmentioning
confidence: 99%
“…First, by Helmholtz decomposition, we can denote boldf=boldg+ψ$$ \mathbf{f}=\mathbf{g}+\nabla \psi $$, where boldg$$ \mathbf{g} $$ is the curl of a function in boldH(curl;Ω)$$ \mathbf{H}\left(\operatorname{curl};\Omega \right) $$ whose tangential trace vanishes on normalΩ$$ \mathrm{\partial \Omega } $$ and ψH1(Ω)$$ \psi \in {H}^1\left(\Omega \right) $$. As shown in [46], by taking boldv=boldu$$ \mathbf{v}=\mathbf{u} $$, q=pψ$$ q=p-\psi $$ in (4) and (5), one has νboldu2=(boldg,boldu)boldgbolduCboldgboldu,$$ \nu {\left\Vert \nabla \mathbf{u}\right\Vert}^2=\left(\mathbf{g},\mathbf{u}\right)\le \left\Vert \mathbf{g}\right\Vert \left\Vert \mathbf{u}\right\Vert \le C\left\Vert \mathbf{g}\right\Vert \left\Vert \nabla \mathbf{u}\right\Vert, $$ where we have used Poincare theorem in the last step. Thus, the exact solution is only bounded by solenoidal part of boldf$$ \mathbf{f} $$: bolduν1boldg.$$ \left\Vert \nabla \mathbf{u}\right\Vert \lesssim {\nu}^{-1}\left\Vert \mathbf{g}\right\Vert .…”
Section: Resultsmentioning
confidence: 99%
See 3 more Smart Citations