We present hydrodynamic and magnetohydrodynamic (MHD) simulations of liquid sodium flows in the von Kármán sodium (VKS) set-up. The counter-rotating impellers made of soft iron that were used in the successful 2006 experiment are represented by means of a pseudo-penalty method. Hydrodynamic simulations are performed at high kinetic Reynolds numbers using a large eddy simulation technique. The results compare well with the experimental data: the flow is laminar and steady or slightly fluctuating at small angular frequencies; small scales fill the bulk and a Kolmogorov-like spectrum is obtained at large angular frequencies. Near the tips of the blades the flow is expelled and takes the form of intense helical vortices. The equatorial shear layer acquires a wavy shape due to three coherent co-rotating radial vortices as observed in hydrodynamic experiments. MHD computations are performed: at fixed kinetic Reynolds number, increasing the magnetic permeability of the impellers reduces the critical magnetic Reynolds number for dynamo action; at fixed magnetic permeability, increasing the kinetic Reynolds number also decreases the dynamo threshold. Our results support the conjecture that the critical magnetic Reynolds number tends to a constant as the kinetic Reynolds number tends to infinity. The resulting dynamo is a mostly axisymmetric axial dipole with an azimuthal component concentrated near the impellers as observed in the VKS experiment. A speculative mechanism for dynamo action in the VKS experiment is proposed.
The Editorial Board invites you to submit your letters to EPL EPL is a leading international journal publishing original, innovative Letters in all areas of physics, ranging from condensed matter topics and interdisciplinary research to astrophysics, geophysics, plasma and fusion sciences, including those with application potential. The high profile of the journal combined with the excellent scientific quality of the articles ensures that EPL is an essential resource for its worldwide audience. EPL offers authors global visibility and a great opportunity to share their work with others across the whole of the physics community.
In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including the support of general meshes and high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for Leray-Lions scalar problems. A complete well-posedness and convergence analysis of the method is carried out under new, general assumptions on the strain rate-shear stress law, which encompass several common examples such as the power-law and Carreau-Yasuda models. Numerical examples complete the exposition.
We develop a novel Hybrid High-Order method for the incompressible Navier-Stokes problem robust for large irrotational body forces. The key ingredients of the method are discrete versions of the body force and convective terms in the momentum equation formulated in terms of a globally divergence-free velocity reconstruction. Denoting by λ the L 2 -norm of the irrotational part of the body force, the method is designed so as to mimick two key properties of the continuous problem at the discrete level, namely the invariance of the velocity with respect to λ and the nondissipativity of the convective term. The convergence analysis shows that, when polynomials of total degree ≤ k are used as discrete unknowns, the energy norm of the error converges as h k+1 (with h denoting, as usual, the meshsize), and the error estimate on the velocity is uniform in λ and independent of the pressure. The performance of the method is illustrated by a complete panel of numerical tests, including comparisons that highlight the benefits with respect to more standard HHO formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.