Metaheuristics have been acknowledged as an effective solution for many difficult issues related to optimization. The metaheuristics, especially swarm’s intelligence and evolutionary computing algorithms, have gained popularity within a short time over the past two decades. Various metaheuristics algorithms are being introduced on an annual basis and applications that are more new are gradually being discovered. This paper presents a survey for the years 2011-2021 on multiple metaheuristics algorithms, particularly swarm and evolutionary algorithms, to identify a nonlinear block-oriented model called the Hammerstein model, mainly because such model has garnered much interest amidst researchers to identify nonlinear systems. Besides introducing a complete survey on the various population-based algorithms to identify the Hammerstein model, this paper also investigated some empirically verified actual process plants results. As such, this article serves as a guideline on the fundamentals of identifying nonlinear block-oriented models for new practitioners, apart from presenting a comprehensive summary of cutting-edge trends within the context of this topic area.